
InoxFlow UVN, UFN

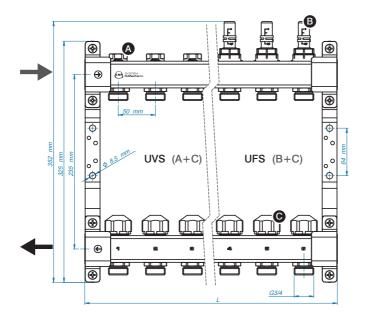
No	2	3	4	5	6	7	8	9	10	11	12
L [mm]	140	190	240	290	340	390	440	490	540	590	640
UVN	1316160022	1316160023	1316160024	1316160025	1316160026	1316160027	1316160028	1316160029	1316160030	1316160031	1316160032
m [g]	1300	1650	2000	2350	2700	3000	3400	3750	4100	4500	4800
UFN	1316157055	1316157056	1316157057	1316157058	1316157059	1316157060	1316157061	1316157062	1316157063	1316157064	1316157065
m [g]	1200	1550	1900	2200	2500	2800	3100	3450	3800	4000	4400

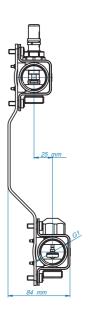
5&6 mm hex

Kvs = 2,4

 $T_{max} = 90^{\circ}C$

 $p_{\text{max}} = 10 \text{ bar}$ $H_2O = 100\% / \text{glycol} = \text{max } 50\%$


0-2,5 l/min


Kvs = 1,1

 $T_{max} = 70^{\circ}C$

 $p_{max}^{max} = 6 \text{ bar}$ $H_2O = 100\% / glycol = max 50\%$

Inox Flow UFS, UVS

No	2	3	4	5	6	7	8	9	10	11	12
L [mm]	140	190	240	290	340	390	440	490	540	590	640
UVS	1316160033	1316160034	1316160035	1316160036	1316160037	1316160038	1316160039	1316160040	1316160041	1316160042	1316160043
m [g]	1450	1900	2300	2750	3200	3600	4000	4500	4900	5400	5800
UFS	1316157066	1316157067	1316157068	1316157069	1316157070	1316157071	1316157072	1316157073	1316157074	1316157075	1316157076
m [g]	1372	1769	2166	2563	2960	3357	3754	4151	4548	4944	5341

5&6 mm hex

Kvs = 2.4

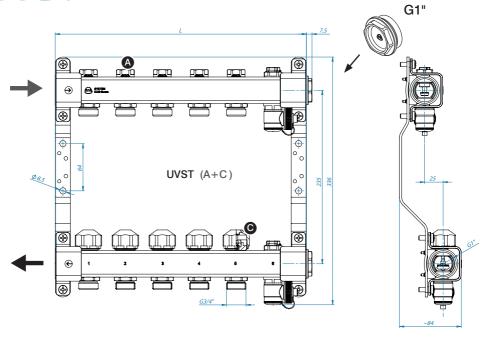
 $T_{\text{max}} = 90^{\circ}\text{C}$

 $p_{max}^{max} = 10 \text{ bar}$ $H_2O = 100\% / \text{glycol} = \text{max } 50\%$

M30×1,5

Kvs = 2.4

 $F_{min} = 50 \text{ N}$ $\Delta h = 4 \text{ mm}$


0-2,5 I/min

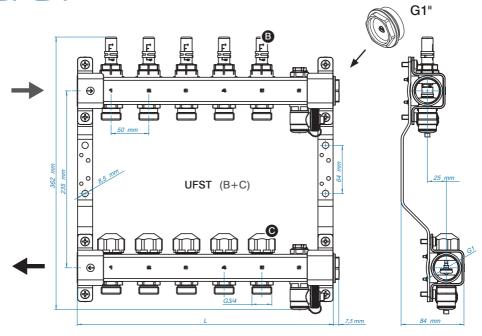
Kvs = 1,1

 $T_{max} = 70^{\circ}C$

 $p_{max} = 6 \text{ bar}$ $H_2O = 100\% / \text{glycol} = \text{max } 50\%$

Inox Flow UVST

No	2	3	4	5	6	7	8	9	10	11	12
L [mm]	190	240	290	340	390	440	490	540	590	640	690
UVST	1316157128	1316157129	1316157130	1316157131	1316157132	1316157133	1316157134	1316157135	1316157136	1316157137	1316157138
m [g]	1946	2376	2807	3237	3668	4098	4529	4959	5389	5820	6250



5&6 mm hex Kvs = 2,4 R = 6 har

 $p_{max} = 6 \text{ bar}$ $h_2O = 100\% / \text{glycol} = \text{max } 50\%$

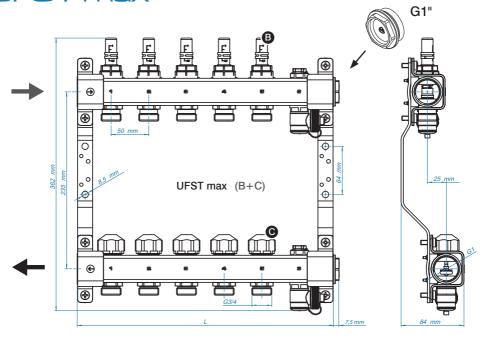
Inox Flow

No	2	3	4	5	6	7	8	9	10	11	12
L [mm]	190	240	290	340	390	440	490	540	590	640	690
UFST	1316157077	1316157078	1316157079	1316157080	1316157081	1316157082	1316157083	1316157084	1316157085	1316157086	1316157087
m [g]	1800	2200	2600	3000	3400	3800	4200	4600	5000	5400	5800

0-2,5 I/min

Kvs = 1,1

T_{max} = 70°C p_{max} = 6 bar H₂O = 100% / glycol = max 50%



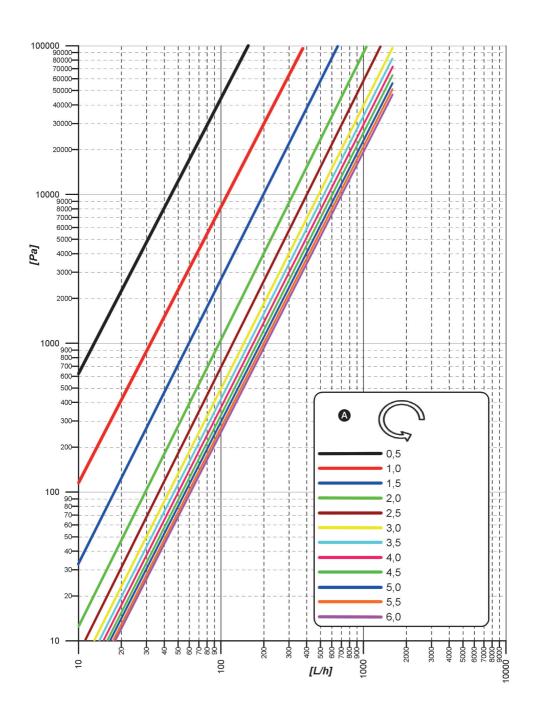
M30×1,5

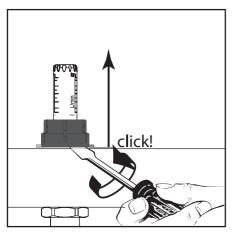
Kvs = 2,4

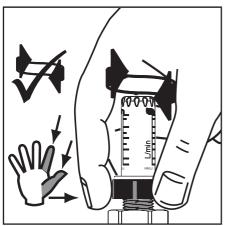
= 50 N

Inox Flow JFST max

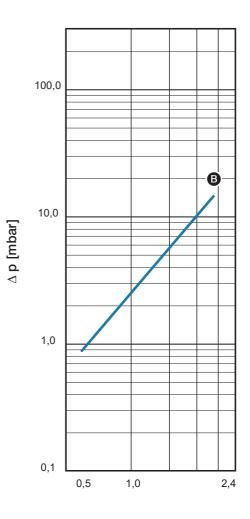
No	2	3	4	5	6	7	8	9	10	11	12
L [mm]	190	240	290	340	390	440	490	540	590	640	690
UFST max	1316157139	1316157140	1316157141	1316157142	1316157143	1316157144	1316157145	1316157146	1316157147	1316157148	1316157149
m [g]	1800	2200	2600	3000	3400	3800	4200	4600	5000	5400	5800




0-5 l/min Kvs = 1,1


 $T_{\text{max}} = 70^{\circ}\text{C}$ $p_{\text{max}} = 6 \text{ bar}$ $H_2\text{O} = 100\% / \text{glycol} = \text{max } 50\%$

M30×1,5 Kvs = 2,4= 50 N



 $T_{\text{max}} = 70^{\circ}\text{C}$

 $p_{max} = 6 bar$

H₂O - 100%

Glycol - max 50%

[l/min]

KAN Sp. z o.o. ul. Zdrojowa 51 16-001 Białystok-Kleosin

www.kan-therm.com